
From (incomplete) TOSCA specs
to running apps, with Docker

Antonio Brogi, Davide Neri, Luca Rinaldi, and Jacopo Soldani

Department of Computer Science, University of Pisa, Italy

Abstract. Cloud applications typically consist of multiple interacting
components, each requiring a virtualised runtime environment providing
the needed software support (e.g., operating system, libraries). In this
paper, we show how TOSCA and Docker can be effectively exploited
to orchestrate applications, even if their (runtime) specification is in-
complete. More precisely, we present a way to automatically complete
TOSCA application specifications, by discovering Docker-based runtime
environments that provide the software support needed by the applica-
tion components. We then discuss how the obtained specifications can
be automatically orchestrated by existing TOSCA engines.

1 Introduction

Cloud computing permits running on-demand distributed applications at a frac-
tion of the cost which was necessary just a few years ago [1]. This has revolu-
tionised the way applications are built in the IT industry, where monoliths are
giving way to distributed, component-based architectures. Modern cloud appli-
cations typically consist of multiple interacting components, which (compared
to monoliths) permit better capitalising the benefits of cloud computing [7].

At the same time, the need for orchestrating the management of multi-
component applications across heterogeneous cloud platforms has emerged [13].
The deployment, configuration, enactment and termination of the components
forming an application must be suitably orchestrated. This must be done by tak-
ing into account all the dependencies occurring among the components forming
an application, as well as the fact that each application component must run in
a virtualised environment providing the software support it needs [9].

Developers and operators are currently required to manually select and con-
figure an appropriate runtime environment for each application component, and
to explicitly describe how to orchestrate such components on top of the selected
environments [15]. Such process must then be manually repeated whenever a
developer wishes to modify the virtual environment actually used to run an ap-
plication component (e.g., because the latter has been updated and it now needs
additional software support).

The current support for developing cloud applications should be enhanced. In
particular, developers should be required to describe only the components form-
ing an application, the dependencies occurring among such components, and

the software support needed by each component [2]. Such description should
be fed to tools capable of automatically selecting and configuring an appropri-
ate runtime environment for each application component, and of automatically
orchestrating the application management on top of the selected runtime envi-
ronments. Such tools should also allow developers to automatically modify the
virtual environment running an application component whenever they wish.

In this paper, we present a solution geared towards providing such an en-
hanced support. Our solution is based on TOSCA [17], the OASIS standard for
orchestrating cloud applications, and on Docker, the de-facto standard for cloud
container virtualisation [18]:

– We first propose a TOSCA-based representation for multi-component appli-
cations, which can be used to specify the components forming an application,
the dependencies among them, and the software support that each compo-
nent requires to effectively run.

– We then present a tool that automatically completes TOSCA application
specifications, by discovering and including Docker-based runtime environ-
ments providing the software support needed by the application components.
The tool also permits changing –when/if needed– the runtime environment
used to host a component.

The obtained application specifications can then be processed by orchestration
engines supporting TOSCA and Docker (such as TosKer [4], for instance). Such
engines will automatically orchestrate the deployment and management of the
corresponding applications on top of the specified runtime environments.

The rest of the paper is organised as follows. Sect. 2 illustrates an example further
motivating the need for an enhanced support for orchestrating the management
of cloud applications. Sect. 3 provides some background on TOSCA and Docker.
Sect. 4 shows how to specify application-specific components only, with TOSCA.
Sect. 5 then presents our tool to automatically determine appropriate Docker-
based environments for hosting the components of an application. Sects. 6 and
7 discuss related work and draw some concluding remarks, respectively.

2 Motivating scenario

Consider the open-source web-based application Thinking1, which allows its
users to share their thoughts, so that all other users can read them. Thinking is
composed by three interconnected components (Fig. 1), namely (i) a MongoDB
storing the collection of thoughts shared by end-users, (ii) a Java-based REST
API to remotely access the database of shared thoughts, and (iii) a web-based
GUI visualising all shared thoughts and allowing to insert new thoughts into the
database. As indicated in the documentation of the Thinking application:

1 The source code of Thinking is publicly available on GitHub at https://github.

com/di-unipi-socc/thinking.

2

https://github.com/di-unipi-socc/thinking
https://github.com/di-unipi-socc/thinking

Fig. 1. Running example: The application Thinking.

(i) The MongoDB component can be obtained by directly instantiating a stan-
dalone Docker-based service, such as mongo2, for instance.

(ii) The API component must be hosted on a virtualised environment support-
ing maven (version 3), java (version 1.8) and git (any version). The API
must also be connected to the MongoDB.

(iii) The GUI component must be hosted on a virtualised environment sup-
porting nodejs (version 6), npm (version 3) and git (any version). The GUI
also depends on the availability of the API to properly work (as it sends
GET/POST requests to the API to retrieve/add shared thoughts).

Docker containers work as virtualised environments for running application
components [18]. However, we have currently to manually look for the Docker
containers offering the software support needed by API and GUI (or to manually
extend existing containers to include such support). We have then to manually
package the API and GUI components within such Docker containers, and to ex-
plicitly describe the orchestration of all the Docker containers in our application.
In other words sense, we have to identify, develop, configure and orchestrate all
components in Fig. 1, including those not specific to the Thinking application
(viz., the lighter nodes API RTE and GUI RTE).

Our effort would be much lower if we were provided with a support requiring
us to describe our application only, and automating the remaining tasks. More
precisely, we should only be required to specify the thicker nodes and dependen-
cies in Fig. 1. The support should then be able to automatically complete our
specification, and to exploit the obtained specification to automatically orches-
trate the deployment and management of the application Thinking. In this paper,
we show a TOSCA-based solution geared towards providing such a support.

3 Background

3.1 TOSCA

TOSCA (Topology and Orchestration Specification for Cloud Applications [17])
is an OASIS standard whose main goals are to enable (i) the specification of
portable cloud applications and (ii) the automation of their deployment and

2 https://hub.docker.com/_/mongo/.

3

https://hub.docker.com/_/mongo/

Fig. 2. The TOSCA metamodel [17].

management. TOSCA provides a YAML-based and machine-readable modelling
language that permits describing cloud applications. Obtained specifications can
then be processed to automate the deployment and management of the specified
applications. We hereby report only those features of the TOSCA modelling
language that are used in this paper3.

TOSCA permits specifying a cloud application as a service template, which
is in turn composed by a topology template, and by the types needed to build
such a topology template (Fig. 2). The topology template is essentially a typed
directed graph, which describes the topological structure of a multi-component
cloud application. Its nodes (called node templates) model the application com-
ponents, while its edges (called relationship templates) model the relations oc-
curring among such components.

Node templates and relationship templates are typed by means of node types
and relationship types, respectively. A node type defines the observable prop-
erties of a component, its possible requirements, the capabilities it may offer
to satisfy other components’ requirements, and the interfaces through which it
offers its management operations. Requirements and capabilities are also typed,
to permit specifying the properties characterising them. A relationship type in-
stead describes the observable properties of a relationship occurring between
two application components. As the TOSCA type system supports inheritance,
a node/relationship type can be defined by extending another, thus permitting
the former to inherit the latter’s properties, requirements, capabilities, interfaces,
and operations (if any).

Node templates and relationship templates also specify the artifacts needed
to actually perform their deployment or to implement their management opera-
tions. As TOSCA allows artifacts to represent contents of any type (e.g., scripts,
executables, images, configuration files, etc.), the metadata needed to properly
access and process them is described by means of artifact types.

3 A more detailed, self-contained introduction to TOSCA can be found in [2,6].

4

TOSCA applications are packaged and distributed in so-called CSARs (Cloud
Service ARchives). A CSAR is essentially a zip archive containing an applica-
tion specification along with the concrete artifacts realising the deployment and
management operations of its components.

3.2 Docker

Docker (https://docker.com) is a Linux-based platform for developing, ship-
ping, and running applications through container-based virtualisation. Container-
based virtualisation [21] exploits the kernel of the host’s operating system to run
multiple isolated user-space instances, called containers.

Each Docker container packages the applications to run, along with what-
ever software support they need (e.g., libraries, binaries, etc.). Containers are
built by instantiating so-called Docker images, which can be seen as read-only
templates providing all instructions needed for creating and configuring a con-
tainer. Existing Docker images are distributed through so-called Docker registries
(e.g., Docker Hub — https://hub.docker.com), and new images can be built
by extending existing ones.

Docker containers are volatile, and the data produced by a container is (by
default) lost when the container is stopped. This is why Docker introduces vol-
umes, which are specially-designated directories (within one or more containers)
whose purpose is to persist data, independently of the lifecycle of the containers
mounting them. Docker never automatically deletes volumes when a container is
removed, nor it removes volumes that are no longer referenced by any container.

Docker also allows containers to intercommunicate. It indeed permits creating
virtual networks, which span from bridge networks (for single hosts), to complex
overlay networks (for clusters of hosts)4.

4 Specifying apps only, with TOSCA

Multi-component applications typically integrate various and heterogenous com-
ponents [9]. We hereby propose a TOSCA-based representation for such compo-
nents (Sect. 4.1). We also illustrate how such representation can be used to spec-
ify only the components specific to an application, and to constrain the Docker
containers that can be used to actually host such components (Sect. 4.2).

4.1 A TOSCA-based representation for multi-component apps

We first define three different TOSCA node types5 to distinguish Docker con-
tainers, Docker volumes, and software components that can be used to build a
multi-component application (Fig. 3).

4 A more detailed introduction to Docker can be found in [14,19].
5 The actual TOSCA definition of all node types discussed in this section is publicly

available on GitHub at https://github.com/di-unipi-socc/tosker-types.

5

https://docker.com
https://hub.docker.com
https://github.com/di-unipi-socc/tosker-types

Fig. 3. TOSCA node types for multi-component, Docker-based applications, viz., tos-
ker.nodes.Container, tosker.nodes.Software, and tosker.nodes.Volume.

tosker.nodes.Container permits representing Docker containers, by indicat-
ing whether a container requires a connection (to another Docker container
or to an application component), whether it has a generic dependency on
another node in the topology, or whether it needs some persistent storage
(hence requiring to be attached to a Docker volume). tosker.nodes.Container
also permits indicating whether a container can host an application compo-
nent, whether it offers an endpoint where to connect to, or whether it offers a
generic feature (to satisfy a generic dependency requirement of another con-
tainer or application component). It also lists the operations to manage a
container (which correspond to the basic operations offered by Docker [14]).

To complete the description, tosker.nodes.Container provides placeholder
properties for specifying port mappings (ports) and the environment vari-
ables (env variables) to be configured in a running instance of the corre-
sponding Docker container. It also provides two properties (supported sw
and os distribution) for indicating the software support provided by the cor-
responding Docker container and the operating system distribution it runs.

tosker.nodes.Volume permits specifying Docker volumes, and it defines a ca-
pability attachment to indicate that a Docker volume can satisfy the storage
requirements of Docker containers. It also lists the operations to manage a
Docker volume (which corresponds to the basic operations offered by the
Docker platform [14]).

tosker.nodes.Software permits indicating the software components forming a
multi-component application. It permits specifying whether an application
component requires a connection (to a Docker container or to another ap-

6

plication component), whether it has a generic dependency on another node
in the topology, and that it has to be hosted on a Docker container or on
another component6. tosker.nodes.Software also permits indicating whether
an application component can host another application component, whether
it provides an endpoint where to connect to, or whether it offers some feature
(to satisfy a generic dependency requirement of a container/application com-
ponent). Finally, tosker.nodes.Software indicates the operations to manage
an application component (viz., create, configure, start, stop, delete).

The interconnections and interdependencies among the nodes forming a multi-
component application can then be indicated by exploiting the TOSCA norma-
tive relationship types [17]. Namely, tosca.relationships.AttachesTo can be used
to attach a Docker volume to a Docker container, tosca.relationships.Connects-
To can indicate interconnections between Docker containers and/or application
components, tosca.relationships.HostedOn can be used to indicate that an ap-
plication component is hosted on another component or on a Docker container,
and tosca.relationships.DependsOn can be used to indicate generic dependencies
between the nodes of a multi-component application.

4.2 Specifying app-specific components only

The TOSCA types introduced in the previous section can be used to specify the
topology of a multi-component application. We hereby illustrate, by means of
an example, how to specify in TOSCA only the fragment of a topology that is
specific to an application (by also constraining the Docker containers that can
be used to actually host the components in such fragment).

Example. Consider again the application Thinking in our motivating scenario
(Sect. 2). The components specific to Thinking (viz., MongoDB, API, and GUI)
can be specified in TOSCA as illustrated in Fig. 4:

– MongoDB is obtained by directly instantiating a Docker container mongo

(modelled as a node of type tosker.nodes.Container). The latter is attached
to a Docker volume where the shared thoughts will be persistently stored7.

– API is a software component (viz., a node of type tosker.nodes.Software).
API requires to be connected to the back-end MongoDB, to remotely access
the database of shared thoughts.

– GUI is a software component (viz., a node of type tosker.nodes.Software).
GUI depends on the availability of API to properly work (as it sends HTTP
requests to the API to retrieve/add shared thoughts).

6 The host requirement is mandatory for nodes of type tosker.nodes.Software, as we
assume that each application component must be installed in another component or
in a Docker container.

7 The documentation of mongo explicitly states that a mongo container must be at-
tached to a Docker volume to persistently store data.

7

Fig. 4. A specification of our running example in TOSCA (where nodes are typed with
tosker.nodes.Container, tosker.nodes.Volume, or tosker.nodes.Software, while relation-
ships are typed with TOSCA normative types [17]).

Please note that the requirements host of both API and GUI are left pending
(viz., there is no node satisfying them). This is because the actual runtime en-
vironment of API and GUI is not specific to the application Thinking, and it
should be automatically determined among the many possible (as we will discuss
in Sect. 5). The only effort required to the developer is to specify constraints
on the configuration of the Docker containers that can effectively host API and
GUI (e.g., which software support they have to provide, which operating system
distribution they must run, which port mappings they must expose, etc.). ut

TOSCA natively supports the possibility of expressing constraints on the nodes
that can satisfy requirements left pending [17], through the clause node filter

that can be indicated within a requirement. node filter permits specifying the
type of a node that can satisfy a requirement, and it permit constraining the
properties of such node.

We can hence exploit node filter to indicate that the software components
in an application must be hosted on Docker containers (viz., on node of type tos-
ker.nodes.Container). We can also indicate constraints on the software support
to be provided by such containers, on the operating system distribution they
must run, and on how to configure them (e.g., which port mappings they must
expose, or which environment variables they should define)

Example (cont.). Consider again the multi-component application Thinking,
modelled in TOSCA as in Fig. 4. The pending requirements host of API and
GUI must constrain the nodes that can actually satisfy them.

The requirement host of API can express the constraints on the Docker con-
tainers that can effectively host it with the node filter in Fig. 5.(a). The latter
indicates that API needs to run on a Docker container, viz., a node of type tos-
ker.nodes.Container, which supports maven (version 3), java (version 1.8) and

8

node_filter:

type: tosker.nodes.Container

properties:

- supported_sw:

- mvn: 3.x

- java: 1.8.x

- git: x

- ports:

- 8080: 8000

- os_distribution: ubuntu

node_filter:

type: tosker.nodes.Container

properties:

- supported_sw:

- node: 6.x

- npm: 3.x

- git: x

- ports:

- 3000: 8080

(a) (b)

Fig. 5. Constraints on the Docker containers that can effectively run the software
components (a) API and (b) GUI (specified within their requirements host).

git (any version). It also indicates a port mapping to be configured in the hosting
container and that such container must be based on a Ubuntu distribution8.

Analogously, the requirement host of GUI can constrain the Docker containers
for hosting it with the node filter in Fig. 5.(b). The latter prescribes that GUI
must run on a Docker container supporting node (version 6), npm (version 3) and
git (any version). It also requires the hosting container to expose the indicated
port mapping. ut

5 Completing TOSCA specs, with Docker

We hereby present TosKeriser, an open-source prototype tool9 that automati-
cally completes “incomplete” TOSCA application specifications (describing only
application-specific components, and indicating constraints on the Docker con-
tainers that can be used to host such components — as discussed in Sect. 4.2).

TosKeriser is a command-line tool, which works as illustrated in Fig. 6:

1 TosKeriser inputs a (CSAR or YAML) file containing a TOSCA applica-
tion specification. It then parses the application topology, and it identifies
the set of software components whose requirement host has to be fulfilled
(according to the constraints indicated in the clause node filter of such
requirement).

8 Constraining the operating system distribution is particularly useful when the arti-
facts implementing the management operations of a software component require to
perform distribution-specific system calls (e.g., a .sh script performing a command
apt-get, which is supported only in Ubuntu-based distributions).

9 The Python sources of TosKeriser are publicly available on GitHub at https:

//github.com/di-unipi-socc/toskeriser (under MIT license).

9

https://github.com/di-unipi-socc/toskeriser
https://github.com/di-unipi-socc/toskeriser

Fig. 6. How TosKeriser works.

2 For each of such components, it invokes DockerFinder10 to identify a
Docker container providing the needed support (viz., satisfying the con-
straints concerning the supported sw and the os distribution).

3 The discovered containers are then included in the application topology.
More precisely, TosKeriser satisfies the pending requirements host by con-
necting them to new nodes of type tosker.nodes.Container. Each of the newly
introduced nodes is configured to satisfy the constraints indicated by the soft-
ware components it hosts (e.g., if a software component is requiring some
port mappings, then the newly introduced container that hosts it will have
the property port set accordingly).

4 TosKeriser outputs the (CSAR or YAML) file containing the automati-
cally completed TOSCA application specification.

5 The obtained file can then be passed to an orchestration engine supporting
TOSCA and Docker (e.g., TosKer [4]), which will automatically deploy and
manage the actual instances of the specified application.

Example. Consider again the application Thinking in our motivating scenario,
whose corresponding TOSCA representation is displayed in Fig. 4. The CSAR file
(thinking.csar) containing the TOSCA application specification of Thinking
is publicly available on GitHub11. Such file can be automatically completed by
executing the following command:

$ toskerise thinking.csar --policy size

The above will generate a new file (thinking.completed.csar), whose topology
is completed by including two new Docker containers, namely APIContainer and
GUIContainer (Fig. 7, lighter nodes). Such nodes provide the software support
and the port mappings needed by API and GUI, respectively. We can then run

10 DockerFinder [3] is a tool allowing to search for Docker containers based on mul-
tiple attributes, including the software distributions they support and the operating
system distribution they are based on.

11 https://github.com/di-unipi-socc/TosKeriser/blob/master/toskeriser/

tests/examples/thinking-app/thinking.csar.

10

https://github.com/di-unipi-socc/TosKeriser/blob/master/toskeriser/tests/examples/thinking-app/thinking.csar
https://github.com/di-unipi-socc/TosKeriser/blob/master/toskeriser/tests/examples/thinking-app/thinking.csar

Fig. 7. Application topology obtained by completing the partial topology of the appli-
cation Thinking (Fig. 4). Lighter nodes and relationships are automatically included
by TosKeriser.

such file TosKer [4] (or with another orchestration engine supporting TOSCA
and Docker), which will automatically deploy and manage the actual instances
of the specified application (see Appendix A).

Please note that we run TosKeriser with the option --policy size. The
latter instructs TosKeriser to concretely implement APIContainer and GUI-
Container with the images of Docker containers having the smallest size (among
all images of containers providing the needed software support). Suppose now
that we wish to change the containers used to host GUI and API, e.g., because
now we want to select the containers are most used by Docker users. We can
run again TosKeriser on the obtained specification, by setting the option -f to
force TosKeriser to change the actual implementation of the Docker containers
it previously created (viz., APIContainer and GUIContainer):

$ toskerise thinking.completed.csar -f --policy most_used

ut

6 Related work

We presented a solution for automatically completing TOSCA specifications,
much in the spirit of [12]. The latter indeed inputs TOSCA specifications contain-
ing only the components specific to an application, and it automatically deter-
mines their runtime environments. However, [12] only checks type-compatibility
between nodes and runtime environments, while we also allow developers to im-
pose additional constraints on the nodes that can be used to host a component
(e.g., by allowing to indicate a component requires a certain software support
on a certain operating system distribution).

[5] and [20] can also be used to automatically determine the runtime envi-
ronment needed by the components of an applications. They indeed allow to

11

abstractly specify desired nodes, and they determine actual implementations for
such nodes by matching and adapting existing TOSCA application specifications.
[5] and [20] however differ from our approach as they look for type-compatible
solutions, without constraining the actual values that can be assigned to a prop-
erty (hence not allowing to indicate the software support to be provided by a
Docker container, for instance).

If we broaden our view beyond TOSCA, we can identify various other efforts
that have been recently oriented to try devising systematic approaches to adapt
multi-component applications to work with heterogeneous cloud platforms. For
instance, [8] and [11] propose two approaches to transform platform-agnostic
source code of applications into platform-specific applications. In contrast, our
approach does not require the availability of applications’ source code, and it
is hence applicable also to third-party components whose source code is not
available nor open.

[10] proposes a framework allowing developers to write the source code of
cloud applications as if they were “on-premise” applications. [10] is similar to
our approach, since, based on cloud deployment information (specified in a sep-
arate file), it automatically generates all artefacts needed to deploy and manage
an application on a cloud platform. [10] however differs from our approach, as
artefacts must be (re-)generated whenever an application is moved to a differ-
ent platform, and since the obtained artefacts must be manually orchestrated
on such platform. Our approach instead produces portable TOSCA application
specifications, which can be automatically orchestrated by engines supporting
both TOSCA and Docker (e.g., TosKer [4]).

In general, most existing approaches to the reuse of cloud services support a
from-scratch development of cloud-agnostic applications, and do not account for
the possibility of adapting existing (third-party) components. To the best of our
knowledge, ours is the first approach which proposes an approach for adapting
cloud applications to work with heterogeneous cloud platforms, by relying on
TOSCA [17] and Docker to achieve cloud interoperability, and by supporting an
easy (re)use of third-party components.

On the one hand, TOSCA is proved to allow automating the orchestration of
a multi-component application, thanks to the fact that deployment and manage-
ment plans can be directly inferred from its topology [2,16]. On the other hand,
Docker standardises the virtual runtime environment of application components
to a Linux-based environment [18], hence allowing to implement their deploy-
ment and management operations as artefacts supported by such environment.

7 Conclusions

Cloud applications typically consist of multiple heterogeneous components, whose
deployment, configuration, enactment and termination must be suitably orches-
trated [9]. This is currently done manually, by requiring developers to manually
select and configure an appropriate runtime environment for each component in

12

an application, and to explicitly describe how to orchestrate such components
on top of the selected environments.

In this paper, we have presented a solution for enhancing the current sup-
port for orchestrating the management of cloud applications, based on TOSCA
and Docker. More precisely, we have proposed a TOSCA-based representation
for multi-component applications, which allows developers to describe only the
components forming an application, the dependencies among such components,
and the software support needed by each component. We have also presented a
tool (called TosKeriser), which can automatically complete the TOSCA spec-
ification of a multi-component application, by discovering and configuring the
Docker containers needed to host its components.

The obtained application specifications can then be processed by orches-
tration engines supporting TOSCA and Docker, like TosKer [4], which can
process specifications produced by TosKeriser, to automatically orchestrate
the deployment and management of the corresponding applications.

TosKeriser is integrated with DockerFinder [3], and it produces specifica-
tions that can be effectively processed by TosKer [4]. TosKeriser, Docker-
Finder and TosKer are all open-source tools, and their ensemble provides a
first support for automating the orchestration of multi-component applications
with TOSCA and Docker. We plan to further extend this ensemble, to pave the
way towards the development of a full-fledged, open-source support for orches-
trating multi-component applications with TOSCA and Docker.

In this perspective, an interesting direction for future work is to investi-
gate whether existing approaches for reusing fragments of TOSCA applications
(e.g., ToscaMart [20]) can be included in TosKeriser. This would permit
completing TOSCA specifications by hosting the components of an application
not only on single Docker containers, but also on software stacks already em-
ployed in other existing solutions.

TosKeriser currently relies only on DockerFinder [3] to search for ex-
isting images of Docker containers. If there is no image providing the software
support and the operating system distribution needed by an application compo-
nent, TosKeriser cannot complete the corresponding TOSCA specification of
the application containing such component. This could be avoided by support-
ing the creation of ad-hoc images (configured from scratch, if necessary). The
development of a tool allowing to build ad-hoc images, as well as its integration
with TosKeriser, is in the scope of our immediate future work.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Communications of the ACM 53(4), 50–58 (2010)

2. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated
Deployment and Management of Cloud Applications, pp. 527–549. Springer, New
York, NY (2014)

13

3. Brogi, A., Neri, D., Soldani, J.: DockerFinder: Multi-attribute search of Docker
images. In: 2017 IEEE International Conference on Cloud Engineering (IC2E). pp.
273–278. IEEE (2017)

4. Brogi, A., Rinaldi, L., Soldani, J.: TosKer: Orchestrating applications with TOSCA
and Docker., 2017. [Submitted for publication]

5. Brogi, A., Soldani, J.: Finding available services in tosca-compliant clouds. Science
of Computer Programming 115, 177 – 198 (2016)

6. Brogi, A., Soldani, J., Wang, P.: TOSCA in a nutshell: Promises and perspectives.
In: Villari, M., Zimmermann, W., Lau, K.K. (eds.) Service-Oriented and Cloud
Computing: Third European Conference, ESOCC 2014, Manchester, UK, Septem-
ber 2-4, 2014. Proceedings. pp. 171–186. Springer Berlin Heidelberg (2014)

7. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)

8. Di Martino, B., Petcu, D., Cossu, R., Goncalves, P., Máhr, T., Loichate, M.: Build-
ing a mosaic of clouds. In: Guarracino, M.R., Vivien, F., Träff, J.L., Cannatoro,
M., Danelutto, M., Hast, A., Perla, F., Knüpfer, A., Di Martino, B., Alexander,
M. (eds.) Euro-Par 2010 Parallel Processing Workshops: HeteroPar, HPCC, HiBB,
CoreGrid, UCHPC, HPCF, PROPER, CCPI, VHPC, Ischia, Italy, August 31–
September 3, 2010, Revised Selected Papers. pp. 571–578. Springer Berlin Heidel-
berg (2011)

9. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Comput-
ing Patterns: Fundamentals to Design, Build, and Manage Cloud Applications.
Springer (2014)

10. Guillén, J., Miranda, J., Murillo, J.M., Canal, C.: A service-oriented framework
for developing cross cloud migratable software. J. Syst. Softw. 86(9), 2294–2308
(2013)

11. Hamdaqa, M., Livogiannis, T., Tahvildari, L.: A reference model for developing
cloud applications. In: Leymann, F., Ivanov, I., van Sinderen, M., Shishkov, B.
(eds.) CLOSER 2011 - Proceedings of the 1st International Conference on Cloud
Computing and Services Science

12. Hirmer, P., Breitenbücher, U., Binz, T., Leymann, F.: Automatic topology com-
pletion of tosca-based cloud applications. In: 44. Jahrestagung der Gesellschaft für
Informatik e.V. (GI). vol. 232, pp. 247–258. Lecture Notes in Informatics (LNI)
(2014)

13. Leymann, F.: Cloud computing. it — Information Technology, Methoden und in-
novative Anwendungen der Informatik und Informationstechnik 53(4), 163–164
(2011)

14. Matthias, K., Kane, S.P.: Docker: Up and Running. O’Reilly Media (2015)
15. Newman, S.: Building microservices. O’Reilly Media, Inc. (2015)
16. OASIS: Topology and Orchestration Specification for Cloud Applications

(TOSCA) Primer. http://docs.oasis-open.org/tosca/tosca-primer/v1.0/

tosca-primer-v1.0.pdf (2013)
17. OASIS: Topology and Orchestration Specification for Cloud Applications

(TOSCA) Simple Profile in YAML, Version 1.0. http://docs.oasis-open.org/
tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.

pdf (2016)
18. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: A state-

of-the-art review. IEEE Transactions on Cloud Computing https://doi.org/10.

1109/TCC.2017.2702586, [In press]

14

http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586

19. Smith, R.: Docker Orchestration. Packt Publishing (2017)
20. Soldani, J., Binz, T., Breitenbcher, U., Leymann, F., Brogi, A.: ToscaMart: A

method for adapting and reusing cloud applications. Journal of Systems and Soft-
ware 113, 395–406 (2016)

21. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based
operating system virtualization: A scalable, high-performance alternative to hy-
pervisors. SIGOPS Oper. Syst. Rev. 41(3), 275–287 (2007)

15

A Appendix

This appendix is included only for the convenience of the reviewers.
It will not be included in the final version of the paper.

This appendix provides some additional details on how to concretely use Tos-
Keriser (and TosKer) to automatically complete and orchestrate applications
with TOSCA and Docker.

A.1 Usage guide of TosKeriser

TosKer is a Python command line tool available on the PyPI index and can
be installed on Linux using pip package manager with the following command:

$ sudo pip install toskeriser

It is then possible to use TosKeriser by executing the command toskerise,
whose usage is below

toskerise FILE [COMPONENT..] [OPTIONS]

toskerise --help|-h

toskerise --version|-v

FILE

TOSCA YAML file or a CSAR to be completed

COMPONENT

a list of component to be completed (by default all

components are considered)

OPTIONS

--debug active debug mode

-q|--quiet active quiet mode

-i|--interactive active interactive mode

-f|--force force updating all

containers

--constraints=value additional constraints

for searching images

--policy=top_rated|size|most_used policy for sorting images

The command inputs a TOSCA file (YAML or CSAR), along with an optional
list of components to be analysed. If no component is specified, then all com-
ponents are analysed. There is also an option --contraints, which permits to
specify additional constraints on how to search for images (e.g., searching im-
ages whose size is lower of 200MB). The option --policy can instead be used
to indicate which images to privilege, viz., size for smallest images, most used

for most pulled images, and top rated for images best rated by Docker users.

16

The flags -i and --interactive allow users to choose the image to use from
a list of appropriate images. The flags -f and --interactive force TosKeri-
ser to search for new Docker containers for hosting the application components
(even if the latter already have their requirements host satisfied). Finally, the op-
tion --debug shows debugging logs during execution, while flags -q or --quiet
prevent writing on the standard output.

Please note that TosKeriser comes with a set of example showing how to
use toskerise. Such example are avaible in the folder /usr/share/examples.

A.2 From thinking.csar to a running instance of Thinking

This section is intended to complement the examples available in this paper. ‘
It indeed illustrates a concrete run of an instance of the application Thinking,
which is obtained by passing a specification outputted by TosKeriser to

After completing thinking.csar by running

$ toskerise thinking.csar --policy size

we can instruct TosKer12 to automatically deploy and run an instance Thinking
by executing the following command:

$ tosker thinking.completed.csar create start --gui_port 80

After the execution of this command, TosKer automatically created, run and
interconnected all components and containers in the topology of the application
Thinking. It also exposed port 80, and it setted port mappings so that the GUI
was accessible through such port (as shown in Fig. 8)

Fig. 8. A snapshot of the obtained instance of (the GUI of) Thinking.

After playing with the instance of Thinking, we instructed TosKer to automat-
ically remove it by executing:

$ tosker thinking.completed.csar stop delete

12 TosKer is publicly available on GitHub at https://github.com/di-unipi-socc/

TosKer, along with a README explaining how to install and use it.

17

https://github.com/di-unipi-socc/TosKer
https://github.com/di-unipi-socc/TosKer

	From (incomplete) TOSCA specs to running apps, with Docker

